Laser-induced thermal processes: heat transfer, thermoelastic waves, melting, spallation, evaporation, and phase explosion (basic mechanisms and illustrations from atomistic modeling)

Leonid Zhigilei

University of Virginia Department of Materials Science and Engineering

Processes involved in laser interaction with materials

Thermal processes in laser-materials interactions

Laser energy deposition and heat transfer

Fourier's law for heat transfer:

$$
q_x = -k \frac{\partial T(x, t)}{\partial x} \quad \text{heat flux [Jm-2s-1]}
$$

$$
\rho c_p \frac{\partial T(x,t)}{\partial t} = \frac{\partial}{\partial x} \left[k(T) \frac{\partial T(x,t)}{\partial x} \right] + S(x,t)
$$

ρ is density [kgm⁻³]; *k* is thermal conductivity [Wm⁻¹K⁻¹], c_p is specific heat [Jkg⁻¹K⁻¹]

if k is constant
$$
\frac{\partial T(x,t)}{\partial t} = D \frac{\partial^2 T(x,t)}{\partial x^2} + S(x,t) \quad \text{where } D = k/\rho c_p \text{ is diffusion}
$$

Dimensionality of heat transfer

$$
\rho c_p \frac{\partial T(x, t)}{\partial t} = \frac{\partial}{\partial x} \left[k(T) \frac{\partial T(x, t)}{\partial x} \right] + S(x, t)
$$

\n
$$
l_{th} = \sqrt{2k \tau / \rho c_p} = \sqrt{2D\tau} \quad \text{characteristic length}
$$
\nof heat diffusion
\nWhen are the estimations based on 1D heat transfer valid?
\n
$$
\Rightarrow \qquad \text{when } l_{th} \ll R_s, \text{ 1D approximation is valid}
$$

 $2R_s \rightarrow \sim \sim$ l_{th} laser pulse l_{th} l_{th}

Example: using k and c_p typical for metals, we can estimate l_{th} ~ 0.1 – 1 μ m for $\tau \sim 1 - 10$ ns (typical melting – resolidification time) \rightarrow 1D is valid for $R_s \approx 10 - 100 \mu m$

Otherwise, if $l_{th} \sim R_s$ or $l_{th} > R_s$ we have to consider 2D or 3D heat transfer:

$$
\rho c_p \frac{\partial T(\vec{r}, t)}{\partial t} = \nabla \cdot [k(T) \nabla T(\vec{r}, t)] + S(\vec{r}, t)
$$

$$
\delta_{eff} = \left(\frac{128}{\pi}\right)^{\frac{1}{8}} \left(\frac{\kappa_0^2 \cdot C_l}{T_f \cdot G^2 \gamma}\right)^{\frac{1}{4}} \qquad C_e = \gamma T_e
$$

$$
k_e = k_0 \frac{T_e}{T_l}
$$

Corkum *et al.*, *Phys. Rev. Lett.* **61**, 2886, 1988

 l_{opt} = 13.5 nm *δeff* ≈ 50 nm

For Ag (small *G*): l_{opt} = 12 nm *δeff* ≈ 350 - 100 nm

thermal diffusion in electron-phonon equilibrium

Dimensionality of heat transfer: Implications for $F_{th}(\tau_n)$

Tsubasa Endo *et al*., *Optics Express* **31**, 36027, 2023

Dimensionality of heat transfer

Zhang, Gökce, Barcikowski, *Chem. Rev.* **117**, 3990, 2017

MD simulations, Mikhail Arefev, current work

12

13

Laser energy deposition and heat transfer

phonons (in non-metals)

What are the *dominant* heat carriers?

- phonons in dielectrics & semiconductors
- electrons in metals

Example: Silicon

Diffusion of electron-hole pairs accounts for \sim 30-40% of *k* of solid Si close to T_m ; jump from 20.4 to 56.5 Wm⁻¹K⁻¹ at 1700 K is due to transition to metallic state upon melting [Fulkerson *et al*., *Phys. Rev.* **167**, 765, 1968] [Yamasue *et al*., *J. Crystal Growth* **234**, 121, 2002]

Why do we care?

Energy is stored in atomic vibrations (phonons), but laser deposits energy to electrons → **conditions for electron-phonon nonequilibrium**

Laser energy deposition & heat transfer: Electron-phonon nonequilibrium Energy pathway:

Laser excitation can create conditions of electron – phonon nonequilibrium

(electron and lattice temperatures are not equal to each other)

For metals: two-temperature model (TTM) [Anisimov *et al., Sov. Phys. JETP* **39**, 375, 1974]

Heat diffusion equations written for T_e and T_1 + **additional terms** accounting for electron-phonon energy exchange

Laser energy deposition & heat transfer: Electron-phonon nonequilibrium

$$
c_e(T_e) \frac{\partial T_e(\vec{r}, t)}{\partial t} = \nabla \cdot [k_e(T_e, T_l) \nabla T_e(\vec{r}, t)] - G(T_e)(T_e - T_l) + S(\vec{r}, t)
$$

$$
c_l(T_l) \frac{\partial T_l(\vec{r}, t)}{\partial t} = \nabla \cdot [k_l(T_l) \nabla T_l(\vec{r}, t)] + G(T_e)(T_e - T_l)
$$

 $\frac{50 \text{ nm}}{20 \text{ nm}}$ 50 nm Ni film irradiated by 200 fs pulse at absorbed fluence of 430 J/ m^2

> Are there any practical implications?

33 nm Au – 33 nm Cr – 33 nm Au three-layer film irradiated by 100 fs pulse at a fluence of 500 J/m2

The results of pump-probe thermoreflectivity measurements can only be explained if the preferential heating of Cr layer is accounted for.

Qiu and Tien, *Int. J. Heat Mass Transfer* **37**, 2789, 1994

G for $Cr \gg G$ for Au

30 nm Ag film deposited on Cu substrate and irradiated by 200 fs pulse at an absorbed fluence of 1300 J/m2

Thomas *et al.*, *Appl. Surf. Sci.* **255**, 9605, 2009 Wu *et al*., *Appl. Phys. A* **104**, 781, 2011 Naghilou *et al*., *Phys. Chem. Chem. Phys.* **21**, 11846, 2019

30 nm Ag film deposited on Cu substrate and irradiated by 200 fs pulse at an absorbed fluence of 1300 J/m2

Thomas *et al.*, *Appl. Surf. Sci.* **255**, 9605, 2009 Wu *et al*., *Appl. Phys. A* **104**, 781, 2011 Naghilou *et al*., *Phys. Chem. Chem. Phys.* **21**, 11846, 2019

Rapid, localized heating by laser pulses

Generation of stresses and stress waves

Laser-induced stresses and stress waves

Continuum-level simulation: Silica substrate, Gaussian laser pulse, $100 \mu m \times 500 \mu m$ computational domain $(d = 21 \text{ µm}, L_p = 10 \text{ µm}, \tau = 100 \text{ ps}, I_{abs} = 10 \text{ J/cm}^2$, Beer's law absorption)

Types and sources of laser-induced stresses:

- Dynamic transient stresses generated due to the conditions of stress confinement
- Ablation or vaporization recoil pressure
- Long-term quasi-static thermo-elastic stresses due to the temperature gradients
- Residual stresses due to the laser-induced structural changes (defects) in the material

Condition of stress confinement: $\tau_h = \max{\{\tau_p, \tau_{e-ph}\}} \leq \tau_s$, where $\tau_s \sim \delta_{eff}/C_s$

Paltauf and Dyer, *Chem. Rev.* **103**, 487, 2003

Leveugle *et al*., *Appl. Phys. A* **79**, 1643, 2004

Photoacoustic probing and imaging

transient grating spectroscopy

optical generation & probing of surface acoustic waves

in situ / *in operando* characterization of evolving subsurface microstructure on sub-μs timescale & with tunable depth resolution, *e.g.*, probing of accumulation of radiation damage

Dennett and Short, *J. Appl. Phys.* **123**, 215109, 2018 Dennett *et al*., *Nucl. Instrum. Methods Phys. Res. B* **440**, 126, 2019

photoacoustic imaging of biological tissue

Selective laser heating (due to the natural optical contrast or embedded nanoparticles) leads to thermal expansion or nanobubbles formation \rightarrow acoustic signal \rightarrow 3D image

http://en.wikipedia.org/wiki/Image:PASchematics_v2.png

Laser-induced stress waves → back surface spallation

Back surface spallation: dynamic fracture due to reflection of a shock wave from a back surface of a sample

Tamura *et al*., *J. Appl. Phys.* **89**, 3520, 2001

Al block impacted by 1.2 cm Al ball at 6.8 km/s *European Space Agency*

Laser-induced stress waves → front surface spallation

Front surface spallation: subsurface cavitation and ejection of a thin molten layer from the irradiated target

Appl. Phys. A **114**, 11, 2014

Laser-induced stress waves → front surface spallation

Front surface spallation: subsurface

Thermodynamic analysis

Comput. Mater. Sci. **166**, 311, 2019 *Appl. Phys. A* **114**, 11, 2014

Can laser-generated SAWs contribute to target surface modification?

 $\overline{250}$

100

 x [µm]

 θ

150

 $\overline{200}$

Shugaev & Zhigilei, *J. Appl. Phys.* **130**, 185108, 2021

Probing ultimate strength under conditions of ultrafast mechanical loading

Probing ideal fracture strength of brittle materials

Impulsive fracture without notching using the effect of gradual growth of stress in the strongly nonlinear SAW pulses - critical tensile stress of dynamic fracture obtained Silicon: Lomonosov and Hess, *PRL* **89**, 095501, 2002 Diamond: Hess, *Diam. Relat. Mater.* **18**, 186, 2009

Modern Acoustical Techniques for the Measurement of Mechanical Properties (Academic, New York, 2001)

Nonlinear sharpening of SAWs: Generation of dislocations

Yuan Xu, current work

Distance, nm

 $-4\frac{1}{0}$ $\frac{1}{50}$ $\frac{1}{100}$ $\frac{1}{150}$ $\frac{1}{200}$

Atomic-scale roughening of the surface due to the SAW-induced generation of dislocations is a possible mechanism of the promotion of surface catalytic activity.

200

400

 $X[\sigma]$

600

800

1000

 -0.06

 -0.08

von Boehn *et al.*, *Angew. Chem. Int. Ed.* **59**, 20224, 2020

Laser-induced phase transformations: Melting

Basic thermodynamics of phase transformations

Heterogeneous melting: propagation of melting front from the surface

melting front velocity $v = \mu \Delta T$

Homogeneous melting: nucleation inside the superheated crystal (*i.e.*, at *T**)

how does the nucleation rate depends on *T*?*

Classical Nucleation Theory: Homogeneous Melting – case study of Au

calculations done with the experimental thermodynamic properties of Au

Arefev *et al*., *Sci. Adv.* **8**, eabo2621, 2022

 $R \approx 10^{35}$ s⁻¹m⁻³ = one nucleus in a volume of $(10 \text{ nm})^3$ every 10 ps

Laser melting of Au films: Experiments and simulations

Electron diffraction experiments for Au 20 films Dwyer et al., *Philos. Trans. R. Soc. London, Ser. A* **364**, 741, 2006.

Gold \Rightarrow weak electron-phonon coupling \Rightarrow **separation of the timescales for lattice heating and melting**

slow heterogeneous melting \longrightarrow fast homogeneous melting

laser fluence

Laser melting of Au films: Experimental probing and simulations

Siwick *et al*., *Science* **302**, 1382, 2003

Experiment: Dwyer et al., *Philos. Trans. R. Soc. London, Ser. A* **364**, 741 (2006)

Quantitative comparison to experiments: Laser melting of Au films

excitation of 5d electrons: $G(T_e)$ and $C_e(T_e)$

timescales of melting in a 20 nm single crystal Au film (200 fs pulse)

Lin *et al*., *Phys. Rev. B* **77**, 075133, 2008 Lin *et al*., *J. Phys. Chem. C* **114**, 5686, 2010

New results for Au films: Very slow heterogeneous melting

Mo *et al*., *Science* **360**, 1451, 2018

Arefev *et al*., *Sci. Adv.* **8**, eabo2621, 2022

Mo *et al*., *Science* **360**, 1451, 2018

Atomistic modeling of melting of 35 nm Au film

Arefev *et al*., *Sci. Adv.* **8**, eabo2621, 2022

Ultra-slow melting cannot be explained by modeling with any reasonable value of *G*

Atomistic modeling of melting of 35 nm Au film

Example EXECUTE: Server *experimental result* "*Never trust an experimental result until it has been confirmed by theory*" Sir Arthur Stanley Eddington

absorbed energy density of 0.21 MJ/kg = $0.99\varepsilon_m$

Time, ps

absorbed energy density of 0.2 MJ/kg = $0.94\varepsilon_m$

Arefev *et al*., *Sci. Adv.* **8**, eabo2621, 2022

Laser-induced phase transformations: Solidification

Laser-induced phase transformations: Solidification

Laser-induced phase transformations: Solidification

Fast heating and cooling Melting and resolidification

Modification of surface microstructure surface alloying, annealing, hardening

Examples:

solidification microstructure – processing maps

Kurtz, *Adv. Eng. Mat.* **3**, 443, 2001

Hoekstra *et al.*, *Adv. Eng. Mat.* **7**, 805, 2005

Equiaxed 10^{-2} 10^{-3} V [m/s] 10° 10^{-6} Columnai 10^{-7} $10⁰$ $10¹$ 10^2 10^3 $10⁵$ 10^{7} 10° $G/K/m$

Transition from columnar to equiaxed microstructure in laser-processed Ni-based superalloy

Clear understanding of the connections between laser processing conditions and microstructure is critical for the actively evolving area of **additive manufacturing**

Laser-induced phase transformations: Vaporization

"Conventional" vaporization of superheated liquid

1. Evaporation from the surface γ

Miotello & Kelly, *Appl. Phys. A* **69**, S67, 1999

normal boiling is subject to a major kinetic bottleneck in the process of bubble diffusion - distances travelled by a bubble in 100 ns are atomically small at $2T_m$

Surface evaporation and normal boiling are not relevant for ns pulses

Surface evaporation becomes important for 100s ns pulses and longer, can also lead to melt expulsion due to vapor recoil pressure

Vaporization of superheated liquid: Transition to "explosive boiling"

What is "explosive boiling," also known as "phase explosion" ?

explosive boiling of liquid superheated up to the limit of thermodynamic stability

Visual picture of phase explosion from large-scale atomistic simulations

Homogeneous boiling (phase explosion): liquid superheated to \sim 90% of the spinodal temperature rapidly decomposes into vapor and liquid droplets.

Analysis of the ablation plume from large-scale MD simulations

Analysis of the ablation plume from large-scale MD simulations

Plume imaging: splitting of the plume into a fast component (optical emission of neutral atoms) and a slow component $(blackbody-like emission \rightarrow presence of hot clusters)$ Albert *et al*., *Appl. Phys. A* **76**, 319, 2003 Okano et al., Appl. Phys. Lett. 89, 221502, 2006 Noël *et al.*, *Appl. Surf. Sci.* **253**, 6310, 2007 Itina *et al*., *Appl. Surf. Sci.* **253**, 7656, 2007 Amoruso *et al*., *Appl. Phys. A* **89**, 1017, 2007 Jegenyes *et al*., *Appl. Phys. A* **91**, 385, 2008 Nakano et al., Appl. Phys. A 101, 523, 2010 Hermann *et al*., *J. Phys.: Conf. Ser.* **399**, 012006, 2012

Dynamics of nanoscale phase decomposition in laser ablation

Experiments at SLAC by Yanwen Sun, Klaus Sokolowski-Tinten *et al.*

Dynamics of nanoscale phase decomposition in laser ablation

Dynamics of nanoscale phase decomposition in laser ablation Transition from photomechanical spallation to phase explosion

Dynamics of nanoscale phase decomposition in laser ablation

Experiments at SLAC by Yanwen Sun, Klaus Sokolowski-Tinten *et al.*

length-scale *d* that corresponds to Q: $d = \frac{2\pi}{9}$ Q

Dynamics of nanoscale phase decomposition in laser ablation: Direct verification of computational predictions

…except that something strange is going on in the low-Q region: Increase at Q ~ 0.005 – 0.02 Å⁻¹ ($d \sim 30$ – 125 nm) within 100 ps

What is the lower limit on the heating rate for triggering phase explosion?

In-situ X-ray probing of **CW additive manufacturing**: sudden disappearance of keyhole protrusions and metal spattering - evidence of the phase explosion.

Zhao et al., *Phys. Rev. X* **9**, 021052, 2019; *Science* **370**, 1080, 2020.

Nahen and Vogel, *J. Biomed. Opt.* **7**, 165, 2002: phase explosion in laser ablation of gelatin and biological tissue induced by **100 μs laser pulses**

Possible question for classroom discussion

What is (or is there) an upper limit for the laser pulse duration for triggering the phase explosion?

Thermal processes at different laser fluences and pulse durations

Laser-induced stress waves

M. V. **Shugaev**, M. **He**, Y. **Levy**, A. **Mazzi**, A. **Miotello**, N. M. **Bulgakova**, and L. V. **Zhigilei**, Laser-induced thermal processes: Heat transfer, generation of stresses, melting and solidification, vaporization and phase explosion, in: *Handbook of Laser Micro- and Nano-Engineering*, Edited by K. **Sugioka** (Springer, Cham, Switzerland, 2021), pp. 83-163.

Summary on laser-induced thermal processes

vaporization phase explosion

parameters of the ablation plume and generation of nanoparticles