

Laser Processing of Soft Materials: Laser Induced Forward Transfer and 2 photon polymerization-direct writing

Maria Dinescu

National Institute for Lasers, Plasma, and Radiation Physics http://ppam.inflpr.ro

EUROPE - ROMANIA

PHYSICS Magurele - Bucharest
 Physics (Aprox. 500 people)
 Physics (aprox. 500 people) - First laser in 1962

National Institute for Lasers, Plasma and Radiation

Physics (aprox. 500 people) - First laser in 1962

Na Campus Magurele - Bucharest

NATIONAL INSTITUTES

 National Institute for Physics and Nuclear Engineering (800 people)

- National Institute for Lasers, Plasma and Radiation
- National Institute for Physics of Materials (300 people)
- National Institute for Earth Sciences (100 people)
- National Institute for Optoelectronics (80 people)

UNIVERSITY OF BUCHAREST

Faculty of Physics

1949-Institute of Atomic Physics 1953-first Nuclear Reactor, Magurele, Bucharest

Strategy for the development of ultra-intense lasers based facilities in Romania

OUTLINE

- Introduction \Box
- Laser induced forward transfer (LIFT)
	- Solid phase LIFT
	- Liquid phase LIFT and ink printing
	- Applications of LIFT in device fabrication
- Two photon polymerization fundamentals and applications
- n Conclusions

Transfer of Layers with Lateral Resolution: Digital Microfabrication Techniques

slide adopted from A.Pique

Transfer of layers with lasers

- First papers: Laser Writing (LR) in 1969 and Material Transfer of layers with lasers

First papers: Laser Writing (LR) in 1969 and Material

Transfer Recording (MTR) in 1970 (R. S. Braudy in

Proceedings of IEEE Oct. 1969, p. 1771, and M. Levene et

al. in Appl.Optics 9, 2260 **Transfer of layers with lasers**

First papers: Laser Writing (LR) in 1969 and Material

Transfer Recording (MTR) in 1970 (R. S. Braudy in

Proceedings of IEEE Oct. 1969, p. 1771, and M. Levene et

al. in Appl.Optics 9, 22 **Transfer of layers with lasers**
First papers: Laser Writing (LR) in 1969 and Material
Transfer Recording (MTR) in 1970 (R. S. Braudy in
Proceedings of IEEE Oct. 1969, p. 1771, and M. Levene et
al. in Appl.Optics 9, 2260 (Forward Transfer (LIFT), i.e. transfer of Cu, in 1986. (J. **Transfer of layers with lasers**
First papers: Laser Writing (LR) in 1969 and Material
Transfer Recording (MTR) in 1970 (R. S. Braudy in
Proceedings of IEEE Oct. 1969, p. 1771, and M. Levene e
al. in Appl.Optics 9, 2260 (1 Transfer of layers with lasers

First papers: Laser Writing (LR) in 1969 and Material

Transfer Recording (MTR) in 1970 (R. S. Braudy in

Proceedings of IEEE Oct. 1969, p. 1771, and M. Levene et

al. in Appl.Optics 9, 2260
- Applied Surface Science, 2005)
- \Box Many variations of the original process have been suggested, which are summarized in the following slides.

Laser-induced forward transfer (LIFT)

Figure 9.5. A schematic description of the apparatus for metal deposition from a solidphased precursor. The source material and target are in contact during an actual experiment (from Bohandy et al. 1986).

J. Bohandy et al., J. Appl. Phys. 60, 1538 (1986)

LIFT: mainly UV lasers, direct exposure of film, thermal or UV load. No vacuum is in principle needed.

The processing technique - LIFT

- o One step process
- \circ High spatial resolution
- o Contact or non-contact
- \circ Flexibility: working distance, size of the transferred patterns, etc.
- \circ Compatible with low fluences
- o No nozzles: No clogging
- o Printing of organic materials and biological compounds possible, though difficult however…

Addition of an intermediate protective layer: metallic, thick polymer, etc. (BA-LIFT, AFA LIFT, etc.)

Addition of a dynamic releasing layer

LIFT

Ladition of DRL, also named AFA-LIFT (absorbing film assisted-LIFT) and mainly thin metal layers (Ag, Ti, Pt, etc. 10-100 nm) are applied. This layer has been added to induce absorption, protect the material, and to lower the required laser energy.

 \Box Example: thermoelectric misfit cobaltite thin films.

J. Chen et al. Appl. Phys. Lett. 104, 231907(2014)

Metal DRL – LIFT

Drawbacks

- \Box For organic (liquid phase biomolecules) not a problem, as usually biocompatible metals are used.
- \Box For materials to be used in devices (ex. **Metal DRL**
 Prawbacks

For organic (liquid phase biomolecules)

not a problem, as usually biocompatible

metals are used.

For materials to be used in devices (ex.

Polymers) – metal nanoparticles from

the DRL may decr the DRL may decrease device performance.
- \Box Transfer of semiconductor DS4T with a EDX observed Au micro and nanoparticles on the surface of the pixel.

Drawbacks

For organic (liquid phase biomolecules)

not a problem, as usually biocompatible

metals are used.

For materials to be used in devices (ex.

Polymers) – metal nanoparticles from

the DRL may decrease device
 = 100 nn 0 1 2 3 4 5

L. Rapp *et al*, Appl. Surf. Sci. 2011

Variation to LIFT: Blister Actuated

Variation to LIFT: Blister Actuated
Ti and other thin film absorbing layers often fail
due to a combination of thermal, optical,
contamination, and mechanical effects. Variation to LIFT: Blister Actuated
Ti and other thin film absorbing layers often fail
due to a combination of thermal, optical,
contamination, and mechanical effects.
How to isolate the effects: Variation to LIFT: Blister Act
Ti and other thin film absorbing layers often fail
due to a combination of thermal, optical,
contamination, and mechanical effects.
How to isolate the effects: Use thick enough film Variation to LIFT: Blis

Ti and other thin film absorbing layers often fail

due to a combination of thermal, optical,

contamination, and mechanical effects.

Abov to isolate the effects:
 Thermal Effects: Use thick eno Variation to LIFT: Blister

and other thin film absorbing layers often fail

tamination, and mechanical effects.

w to isolate the effects: Use thick enough film

that the thermal diffusion is not significant

over the tim and other thin film absorbing layers often fail

to a combination of thermal, optical,

tamination, and mechanical effects.

w to isolate the effects: Use thick enough film

that the thermal diffusion is not significant

o

-
-
- products
- deformation

slide adopted from C. Arnold (Princeton University)

Blister actuated LIFT

M.S. Brown, N. T. Kattamis, C. B. Arnold, J. Appl. Phys, 107, 083103, (2010) slide adopted from C. Arnold (Princeton University)

Blister Actuated - LIFT

 II III) II and III are best $(F \sim 3.6 \text{ J cm}^{-2})$ $IV)$ V) $20 \mu m$

Increasing Laser Energy

Used e.g. for printing embryonic stem cells (and Alq₃ and anthracene compounds)

- N. T. Kattamis, P. E. Purnick, R. Weiss, C. B. Arnold, Appl. Phys. Lett. 91, 171120 (2007).
- N. T. Kattamis, N. D. McDaniel, S. Bernhard, C. B. Arnold, Appl. Phys. Lett. 94, 103306 (2009).

slide adopted from C. Arnold (Princeton University)

LIFT using a photodynamic release layer

New approach : □ Use of a UV-sensitive dynamic release layer, designed for 308 nm

Triazene polymer (TP) - principle

Chromophore in the main chain \rightarrow decomposition into gas fragments upon UV laser irradiation

Benefits :

-)
- high ablation rate
- clean ablation, no redeposition
- production of gas \rightarrow pressure

EXAMPLES OF Materials transferred Examples of materials transferred with TP

- 1st report on LIFT with TP transfer of PMMA by T. Mito et al. Jpn. J. Appl. Phys. (2001)
- et al., Appl.Surf. Sci.(2006)
- \checkmark Al, R. Fardel et al, Appl. Surf. Sci. (2007)
- Quantum dots, Xu et al, Nanotech (2007)
- Functional OLEDs, R. Fardel et al, Appl. Phys. Lett. (2007)
- 3 color OLED, J. Shaw-Stewart et al, APL (2012)
- \checkmark GdGaO, Banks *et al.*, (2008)
- Polystyrene microbeads, A. Palla-Papavlu et al., JAP (2010)
- Semiconductor DS4T, L. Rapp et al, Appl. Surf. Sci. (2011)
- Liposomes, A. Palla-Papavlu et al,

XeCl, 308 nm, 2 Hz, contact, 100 nm TP, 60 nm polymer

 \triangleright evaporation driven surface tension forces

V. Dinca *et al*, Appl. Phys. A (2010)

DRL assisted LIFT

Transfer of single layers Development of chemical interactive membranes **Device fabrication**

80 nm Al pixels transferred at 308 nm and the contract of the con R. Fardel et al, Appl Surf Sci (2007)

A. Palla-Papavlu et al., Scientific Reports (2016)

A. Bonciu, F. Andrei, A. Palla-Papavlu, Materials (2023)

SAW sensor fabrication Via D
 \cdot XeCl, 308 nm, 30 ns pulse duration, 1 Hz, contact, 100 nm TP

Sensor responses (vapor/polymer interactions) \rightarrow SAW sensor fabrication via DRL LIFT

-
- 2port SAW resonators, operating frequency 392 MHz

• SAW senators, operation, 1 Hz, contact, 100 nm TP

• Zecl, 308 nm, 30 ns pulse duration, 1 Hz, contact, 100 nm TP

• Zensor responses (vapor/polymer interactions) →

solubility interactions and LSER (linear solvation-
 • Yecl, 308 nm, 30 ns pulse duration, 1 Hz, contact, 100 nm TP

• Zport SAW resonators, operating frequency 392 MHz
 Sensor responses (vapor/polymer interactions)

• **solubility interactions and LSER (linear** solvation-
 Sensor responses (vapor/polymer interactions) → solubility interactions and LSER (linear solvationenergy relationship)

- (Hydroxypropyl)methyl cellulose (HPMC)
-
-
- Poly(styrene-co-maleic acid) (PSCMA)
- Polyethyleneimine(PEI)
-
- Moderate dipolarity, weak hydrogen bonding and the state of t
- Weakly dipolar, weak or no hydrogen bonding
- Hydrogen bond acidic
- Hydrogen bond basic

M. Benetti et al, Sensors and Actuators B (2019)

Analytes:

DMMP: simulant for pesticides containing phosphonate ester groups

DCM: an industrially applied toxic compound

EA: a wide spread solvent in medical applications which can be harmful to humans Tol: common solvent

DCP: solvent, paint and varnish remover, insecticide, and soil fumigant

SAW sensors for gas detection

- The SAW sensors showed a fast, remarkable and reversible response. The responses reached approximately 80% of the saturation value within 100 s.
- When the DMMP is removed, the recovery times to return to 80% of the initial baseline values were within 140 s.
- The relative standard deviations between responses obtained in the same conditions were within 5%, demonstrating a good repeatability of the system.

SAW sensors for gas detection

INEL PE

- selection based on the LSER analysis for the preparation of SAW sensors by LIFT
- confirms the feasibility of polymer
selection based on the LSER analysis
• The 5 sensor array is able to discriminate between the analytes.

M. Benetti et al, Sensors and Actuators B (2019)

 $200 \mu m$

Sensor fabrication via DRL LIFT

- SWCNT: $SnO₂ 1:14$ ratio
- $SnO₂$ 10-14 nm diameter
- TP layer 150 nm thick

- The sensors are reproducible
- Tested against different concentrations of NH₃ at room temperature
- The SWCNT@SnO₂ sensors exhibit a fast and reversible response over multiple cycles
- They have a theoretical detection limit in the low ppt range

LIFT of CNW

Deposition of CNW thin films

- o Radio-frequency plasma beam CVD
- o Interconnected network of micron-sized flakes from multi graphene-like structures o Vertical orientation and chaotic lateral displacement with hundreds of nm mean spacing
- \circ Lamellar morphology with well separated individual flakes of \sim 2 µm in length and sharp edges

CNW pixel transfer on rigid substrate

- \circ glass substrate, 500-700 mJ/cm² laser fluence \longrightarrow intact pixels
- \circ low adhesion
- \circ pixels are surrounded by debris

Pixels perpendicular on the substrate

Need to reduce stress on pixels during transfer and improve adhesion!

 \circ different flexible substrates, similar roughness below 10 nm for 40x40 μ m² areas

-
- o No obvious damage or detachment occurs to the LIFT-ed CNW

Hybrid CNW $SnO₂$ donor fabrication
for sensors membranes printing
 $\frac{1}{\infty}$ Colloidal solution of Sn0₂ (15 %wt)
 $\frac{1}{\infty}$ Sn0₂ NPs with sizes of 5-10 nm
 $\frac{1}{\infty}$ Preparation of thin films: spin coating on Hybrid CNW $\,$ SnO₂ donor fabrication for sensors membranes printing

- \circ Colloidal solution of SnO $_2$ (15 %wt)
- \circ SnO₂ NPs with sizes of 5-10 nm
-
- \circ Preparation of thin films: spin coating onto CNW
 \circ Anneal at 300°C remove traces of organic material (TritonX)

- \circ SnO₂ NPs are homogenously distributed on the CNW
- \circ In some areas, SnO₂ agglomerates are found sparsely distributed on the CNWs
- \circ The SnO₂ NPs are specifically agglomerated at defect points onto the CNWs

A. Palla Papavlu et al Appl. Surf. Sci. 2016

LIFT of CNW:SnO₂ on Kapton

- \circ The CNW:SnO₂ nanocomposite in the pixels maintain their morphology after transfer
- \circ Small cracks in the pixels
- \circ Some tearing induced by shear stress may be seen at the edges

A. Palla Papavlu et al Appl. Surf. Sci. 2016

Micro-Raman spectra of CNW (black), $SnO₂$ nanoparticles (blue), and CNW:SnO₂pixels transferred at 600 mJ/cm2 laser fluence (red). Inset: Raman bands observed for the $SnO₂$ nanoparticles in the SnO₂donor and CNW:SnO₂pixels transferred by LIFT

Ammonia sensors with CNW active material

-
- Ar plasma jet injected with acetylene and hydrogen at $Ar/H_2/C_2H_2$ 1400/25/1 sccm
- Quartz substrate temperature 700 °C
- Deposition time is 15 minutes, CNW layer thickness is 1 µm

Ammonia sensors with CNW active material

- P-type semiconductor response
- LOD for $NH₃$ is 89 ppb for 30 min of exposure
- This LOD value is one order of
magnitude lower than that of
chemiresistive devices based on
CNW reported previously
The CNW are sensitive to NH₃
within 1 minute of exposure
Full reversibility only for 20 ppm
NH3 exposure • This LOD value is one order of magnitude lower than that of W**ith CNW active**
 rial
 P-type semiconductor response

LOD for NH₃ is 89 ppb for 30

min of exposure

This LOD value is one order of

magnitude lower than that of

chemiresistive devices based on

CNW reported prev CNW reported previously • P-type semiconductor response
• LOD for NH₃ is 89 ppb for 30
min of exposure
• This LOD value is one order of
magnitude lower than that of
chemiresistive devices based on
CNW reported previously
• The CNW are sensitiv
- The CNW are sensitive to NH₃ within 1 minute of exposure
- Full reversibility only for 20 ppm NH3 exposure
-

Ammonia sensors with CNW active material

- The sensors exposed to 20 ppm of ammonia after carrying out multiple
- We noticed that without any bending, the initial resistance of the fabricated flexible chemiresistor was measured to be around 6300 Ω at 22 ∘C
- The Ohmic behavior did not change after the applied bending cycles
- A

A a is is in all and the sistance of the fabricated

all resistance of the fabricated

and 6300 Ω at 22 \circ C

applied bending cycles

at a 20 ppm concentration of

g cycles

A. Palla-Papavlu et al, Nanomaterials 20 • The resistance variation of the chemiresistor at a 20 ppm concentration of NH3 was small (\sim 3%) with increasing bending cycles

Liquid phase LIFT Laser Transfer as Function of Viscosity

centipoise (1miliPascal second) slide adopted from A.Pique
Liquid phase LIFT

- Microarray fabrication: fs, ps, or ns lasers were used
- Transfer of a water:glycerol solution as model solution for biomolecules

DNA Microarray (using Ti layer)

From droplets to lines (overlapping...)

splashing

(4) $50 \mu m$

A. Palla-Papavlu *et al.* Appl Phys A (2013)

C. Florian et al. Appl Surf Sci (2015)

Liquid phase LIFT - applications

Array composed of 3 sensors: SAW resonators operating at 392 MHz

Liquid phase LIFT - applications
Array composed of 3 sensors: SAW resonators operating at 392 MHz
Proteins: Wild-type bovine odorant-binding protein (wtbOBP)
Mutant bOBP (mutbOBP)
Odorants: 1-octen-3-ol (octenol), carvon

Odorants: 1-octen-3-ol (octenol), carvone

Liquid phase LIFT - applications

 \Box The obtained sensitivities for odorant detection are comparable with results reported in the literature obtained with SAW sensors and the same proteins, deposited by other methods.

F. Di Pietrantonio et al Biosensor and Bioelectronics (2015)

□ With multi-passes approach, line can be printed at velocities up to 4m/s

E. Biver *et al.* Applied Surface Science (2014)

slide adopted from P. Delaporte

Single step printing of continuous lines

 $15 \mu s$

- \Box Increasing metal content of the ink allows the stabilization of the ejection process (higher surface tension? Viscosity?)
- \Box Tuning the position of the following laser shot (scanning velocity, laser frequency) as a function of the bubble size allows transferring a continuous line instead of multiple jets

Applications: Interconnects

flexible substrates

Auyeung, et al., J. of Laser Micro/Nanoeng. 2, (2007) 21 Ag nanoink: $3 - 7$ nm, $\eta \approx 10^5$ cP, 80 Piqué, et al. J. Laser Micro/Nanoeng., 3 (2008) 163.

slide adopted from A.Pique

3D and Free Standing Structures

Multilayer scaffold structure

slide adopted from A.Pique

Ag and Cu nanoparticle printing

One-step additive LIFT printing of conductive elements Alena Nastulyavichus et al, Laser Phys. Lett. 21 (2024) 035603

Graphite from inks

Thermal image of the surface temperature of a 18 mm² graphite heater printed on PET foil with a resistance of 48.6 Ω at a) electrodes. The big square on the images denotes the region of interest and the marker is at the region with maximum temperature Logaheswari Muniraj et al, Laser-induced forward transfer for manufacture of graphite-based heaters on flexible substrate, Sensors and Actuators A: Physical, Volume 373, 1 August 2024

Commercial applications

A roll to roll LIFT printing machine for graphic applications

G. Hennig *et al.* J. Laser Micro/Nanoengineering (2012) the quick brown fox jumped over the lazy day the puick brown is simpled over the lazy day the guick brown is simpled over the lazy day the quick brown to signing dow

Conclusions

- **Conclusions**
 Conclusions Conclusions

Laser direct write techniques are positivity of materials can be transference printing techniques. **CONCLUSIONS**
 CONCLUSIONS CONCLUSIONS

a Laser direct write techniques are possible alternatives to

printing techniques.

a A wide variety of materials can be transferred.

a Even sensitive materials, e.g. biomaterials or polymers can be

transfer The application of a dynamic release layer (absorbing layer) **CONCLUSIONS**

Laser direct write techniques are possible alternatives to

printing techniques.

A wide variety of materials can be transferred.

Even sensitive materials, e.g. biomaterials or polymers can be

transferred. α Laser direct write techniques are possible alternatives to
printing techniques.

α A wide variety of materials can be transferred.

α Even sensitive materials, e.g. biomaterials or polymers can be

transferred.

α The Laser direct write techniques are possible alternatives to
printing techniques.
A wide variety of materials can be transferred.
Even sensitive materials, e.g. biomaterials or polymers can be
transferred.
The application of
-
- transferred.
-
-
- α Laser direct write techniques are possible alternatives to
printing techniques.

α A wide variety of materials can be transferred.

The application of a dynamic release layer (absorbing layer)

increases the p printing techniques.
A wide variety of materials can be transferred.
Even sensitive materials, e.g. biomaterials or polymers can be
transferred.
The application of a dynamic release layer (absorbing layer)
increases the po α A wide variety or materials can be transferred.

α Even sensitive materials, e.g. biomaterials or polymers can be transferred.

α The application of a dynamic release layer (absorbing layer) increases the possibilitie
-

WILEY-VOH

Edited by
Alberto Piqué and Pere Serra

Laser Printing of Functional Materials

3D Microfabrication, Electronics and Biomedicine

LDW by 2PP

- **D** Three-dimensional polymeric microstructures
- No topological constrains
- \Box High penetration depth without surface modifications
- **Q** Resolution bellow the $\frac{200 \mu m}{\text{m}}$ diffraction limit

by TPP http://www.nanoscribe.de/en/applications/microrapid-prototyping/

APPLICATIONS of LDW via 2PP

Photonic Surfaces

- $\sqrt{ }$ diffractive optical elements (DOEs) and gratings
- $\sqrt{\overline{m}}$ metamaterials
- $\sqrt{\frac{1}{2}$ optical security labels
- $\sqrt{\ }$ optical waveguides

Micro-Optics

 $\sqrt{\text{Complex}}$ and replicable 2.5D structures as molds for replication or masters for pattern $\int_{100 \mu m}$ transfer

Cell Scaffolds and Biomimetics

 $\sqrt{3}$ 3D tailored environment acting as an artificial extracellular matrix, i.e., a scaffold for the cells

Array of semisphere micro-optics directly fabricated with a Photonic Professional GT

Mechanical Microstructures

 \sqrt{M} Mechanical metamaterials Ultralight materials

Polymer bucky ball microprinted with **Photonic Profess** system for trappin inside. 20 µm

http://www.nanoscribe.de/en/ applications/

A little bit into the theoretical background...

LDW by 2PP

- **EDW by 2PP**
Photopolymerization: chemical reaction that turns monomers into macromolecules
consisting of repeating units, by using light as reaction trigger
Two-photon absorption (2PA) polymerization: simultaneous absor **consisting of repeating units, by using light as reaction trigger**
 Consisting of repeating units, by using light as reaction trigger
 Consisting of repeating units, by using light as reaction trigger
 Consisting of EDW DY 2PP
 ENDIVERENT SET SET SET SET SET SET SET SET SET SCHOUSE SOMETHER
 ENDIVERENT SURFERENT SURFERENT
- photons
	-
	-
- Small solidified volume (voxel) around the focal spot of the focal soliding of repeating units, by using light as reaction trigger

Small solidified volume (2PA) polymerization: simultaneous absorption of two-photons

Poly **Photopolymerization:** chemical reaction that turns monomers into macromolecules
consisting of repeating units, by using light as reaction trigger
Two-photon absorption (2PA) polymerization: simultaneous absorption of tw

http://www.nanoscribe.de/en/applic ations/micro-rapid-prototyping/

2PA absorption **2PA absorption**
An atom or molecule taken to an excited state by simultaneously absorbing two photons
a Difficult to be attained by using conventional (low intensity) light sources **DIFA absorption**
 EXECUTE A ADISOTPLION
 EXECUTE A ADISOTPLION
 EXECUTE: The propertional (low intensity) light sources
 EXECUTE: Pulsed laser light is employed

Changied propertion in a finy food values. **SOPPLION**
 Example 2014 CONSTRESS
 **Example 2014 Conserved State by simultaneously about the attained by using conventional (low intensity) light sore Pulsed laser light is employed

Example 2014 Chemical reaction in a CHEMIC SERVIP 2019**

An atom or molecule taken to an excited state by simultaneously absorbing two p
 Chemical reaction in a tiny focal volume
 Chemical reaction in a tiny focal volume
 Chemical reaction in a tiny f

-
-
-
- -

Representation of a degenerated and nondegenarated two-photon transition between $|n\rangle$ and $|n+1\rangle$ electronic states of an atom or molecule. The dotted lines represent a virtual state which intermediate the two-photon absorption process.

D.S. Correa et al. Two-Photon Polymerization Fabrication of Doped Microstructures (2012) InTech

2PA absorption

Two-photon absorption occurs in defined spatial regions where the light intensity is high enough

 \rightarrow Polymerization only in a small region

 \rightarrow No other changes in the surrounding regions

Evidence about the spatial confinement of the excitation:

- \rightarrow two-photon excitation gives **localized** fluorescence
- one-photon excitation gives extended fluorescence

along the whole optical path

D.S. Correa *et al*. Two-Photon Polymerization Fabrication of Doped Microstructures (2012) InTech

(Marder, et al., 2007). Copyright [2007], Materials Research Society.

2PA absorption

-
- **POLYCOM**
Polymerization threshold imposes a minimum power (power thershold)
Polymerization threshold imposes a minimum power (power thershold)
Power to Even though the outer regions of the beam might not have enough power **Even though the outer regions of the beam might not have enough power to**
 Even though the outer regions of the beam might not have enough power to

start the reaction, the central part of the beam can overcome the thre **Start the reaction, the central part of the beam can overcome the threshold.**

Folymerization threshold imposes a minimum power (power thershold)

Even though the outer regions of the beam might not have enough power to

Inter-

University of the same might not have enough power to

beam can overcome the threshold.
 Laser power near the

polymerization **threshold** polymerization threshold um power (**power thershold**)
ham might not have enough power to
beam can overcome the threshold.
Laser power near the
polymerization **threshold**
pushes the resolution
below the diffraction limit um power (**power thershold**)
ham might not have enough power to
beam can overcome the threshold.
Laser power near the
polymerization **threshold**
pushes the resolution
below the diffraction limit

D.S. Correa et al. Two-Photon Polymerization Fabrication of Doped Microstructures (2012) InTech

Principle of LDW by TPP

Experimental setup for LDW by TPP

Arbitrary tridimensional microstructures by

- \rightarrow scanning the laser beam through the resin volume OR
- \rightarrow moving the sample in X, Y and Z directions

2PA absorption

Voxel, the primitive building block of a 3D structure Volume where the laser intensity is higher than the polymerization threshold

 \rightarrow The voxel size can be controlled by:

 $\sqrt{\ }$ changing the exposure time

32 ms exposure time

 $\sqrt{ }$ adjusting the average irradiation laser power

Power 5 mW

Hong-Bo Sun Appl Phys Lett (2003)

Experimental setup for LDW by TPP

D.S. Correa et al. Two-Photon Polymerization Fabrication of Doped Microstructures (2012) InTech

2PP-DW by fs laser 1D, 2D, 3D scaffolds for tissue engineering INFLPR

50 lines polymerized SIM 3 sample. Distance between

lines: 100 μm between lines: 50 μm 30x30 lines polymerized SIM 3 sample. Distance

3 layers 30x30 lines polymerized SIM 3 sample. Distance between lines: 100 μm

2PP-DW by fs laser 1D, 2D, 3D scaffolds for tissue engineering

Optical image of a free-standing structure 3x3 mm²: spacing between lines 100 µm

2PP-DW by fs laser 1D, 2D, 3D scaffolds for tissue engineering $\frac{2PP-DW}{10}$ by ts laser
 $\frac{1}{2}$
 $\frac{1}{2$

- **Applications on LDW by TPP**

If one could "mechanically actuate" the micro-reservoires,

the process of bone regeneration could be stimulated. **Applications on LDW by TPP**
If one could "mechanically actuate" the micro-reservoires,
the process of bone regeneration could be stimulated.
- \checkmark 1st step: fabricate simple vertical microtubes and check if **Applications on LDW by TPP**
Fore could "mechanically actuate" the micro-reservoires,
ne process of bone regeneration could be stimulated.
st step: fabricate simple vertical microtubes and check if
ney are favorable for **EXECUTE FOR APPLICALIOTIS OFF LEVANSITY IF P**
If one could "mechanically actuate" the micro-reservoires,
the process of bone regeneration could be stimulated.
1st step: fabricate simple vertical microtubes and check if (osteoblasts).

Low laser power (20 mW) "incomplete" shapes, insufficient polymerized material Medium laser power (34 mW) self-standing microtubes, with clean bottom and sharp walls

High laser power (44 mW) irregular tube walls and residual polymer on the bottom; extensive material polymerization

20 TUN

-
-

The microtube arrays promote osteoblasts growth

The osteoblasts are spreading across the W by TPP
The osteoblasts are
spreading across the
microtube arrays

The cells produce mineralization nodules (Ca/P):

 \rightarrow evidence for the starting point of new bone formation

LDW by TPP
The Ca/P nodules were measured by
EDX. EDX.

LDW by TPP
The Ca/P nodules were measured by
EDX.
The enhancement of the osteogenesis is attributed to the chances in the salls attributed to the **COM BY TPP**
The Ca/P nodules were measured by
EDX.
The enhancement of the osteogenesis is attributed to the changes in the cells cytoskeletal The Ca/P nodules were measured by
EDX.
The enhancement of the
osteogenesis is attributed to the
changes in the cells cytoskeletal
arrangement and nucleus shape The Ca/P nodules were measured by
EDX.
The enhancement of the
osteogenesis is attributed to the
changes in the cells cytoskeletal
arrangement and nucleus shape
induced by the microtubes The Ca/P nodules were measured by
EDX.
The enhancement of the
osteogenesis is attributed to the
changes in the cells cytoskeletal
arrangement and nucleus shape
induced by the microtubes
architecture. architecture.

Applications on LDW by TPP
Electrically-conductive micro-reservoires for controlled
delivery of drugs in bone tissue engineering delivery of drugs in bone tissue engineering

Applications on LDW by TPP
Electrically-conductive micro-reservoires for controlled
delivery of drugs in bone tissue engineering
 $\sim 2^{nd}$ step: confer electrical conductivity to the microtubes in
view of electrically-cont view of electrically-controlled delivery of dexamethasone (Dex). elivery of drugs in bone tissue engineering
p: confer electrical conductivity to the microtubes in
^F electrically-controlled delivery of dexamethasone
Dex: antiinflammatory drug with osteogenic activity
Applications on LDW by TPP

- **-** LDW by TPP was used for producing vertical microtubes arrays; the laser beam was
- From left to right: increasing laser power from 18 mW to 22 mW and up to to 26 mW.

Applications on LDW by TPP Applications on LDW by TPP
The microtubes were loaded with Polypyrrole (conductive polymer) /
Dexamethasone (model drug) mixture, via a simple immersion process.
- For preventing the passive drug diffusion, the micro-reser **Applications on LDW by TPP**
The microtubes were loaded with **Polypyrrole** (conductive polymer) /
Dexamethasone (model drug) mixture, via a simple immersion process.
For preventing the passive drug diffusion, the micro-res **Applications on LDW by TPP**

For preventing the passive drug diffusion, the micro-reservoires were sealed with a thin

For preventing the passive drug diffusion, the micro-reservoires were sealed with a thin

layer of PLG **Applications on LDW b**
The microtubes were loaded with **Polypyrrole** (condu
Dexamethasone (model drug) mixture, via a simple immersion pr
For preventing the passive drug diffusion, the micro-reservoires we
layer of PLGA (

-
-

Loading with

Polypyrrole/Dexamethasone of poly lactide co glycolide (PLGA)

Applications on LDW by TPP

STEP 1: Arrays of vertical microtubes produced by 2PP_LDW

STEP 2: Microtubes loaded with PPy/Dex-Gly

STEP 3: Electrically responsive microreservoires (ERRs): PPy/Dex-Gly loaded microtubes covered with a thin PLGA layer deposited by MAPLE

EP 4: Polypropylene rings glued around the ERRs, to create wells for cell seeding

Applications on LDW by TPP

 The kinetics of Dex release can be controlled by electrical stimulation of the microtubes.

Biomedical Implants Maria Farsari-FORTH

Schizas, J. Adv. Manufact. Technol. 48, 435 (2010).

Spanos , Nanomaterials, 11446 (2012)

Hybrid Materials (Maria Farsari FORTH)

SZ2080 Thymol-SZ2080

Parkatzidis, Polymer Chemistry 11, 4078 (2020) THYMA moieties

Collaboration with M. Vamvakaki, U. of Crete

Ovsianikov, , ACS Nano 2, 225 (2008) zirconium propoxide (ZPO)

Mechanical Metamaterials Maria Farsari-FORTH Mechanical Metamaterials

K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Varnvakaki, M. Farsari, 3D c

using direct laser writing. Opt. Mater. Express 1, 586–597 (2011)

HARDENING AND

ENERG Mechanical Metamaterials

Maria Farsari-FORTH

K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, M. Farsari, 3

using direct laser writing. Opt. *Mater. Express* 1, 586–597 (201

ENE Maria Farsari-FORTH

K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, M. Farsari, 3D con

using direct laser writing. Opt. Mater. Express 1, 586–597 (2011)

HARDENING AND

ENERGY AB

K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, M. Farsari, 3D conducting nanostructures fabricated using direct laser writing. Opt. Mater. Express 1, 586–597 (2011)

Collaborration with F. dell' Isola, Aquila U

3D conducting nanostructures fabricated
11)
**A I - O P T O M I Z E D
M E C H .**
M E T A M A T E R I A L S 3D conducting nanostructures fabricated
(1)
**AI - OPTOMIZED
MECH.**
METAMATERIALS S

BD conducting nanostructures fabricated

11)
 **AI-OPTOMIZED

MECH.**

METAMATERIALS PANTOGRAPHS **FILL AI-OPTOMIZED**

Vangelatos, Int. J. Sol. Struct. 193, 287 (2020).

Vangelatos, Science Advances 7, eabk2218, (2021).

Collaborration with Costas Grigiropoulos, UC Berkeley

Organic-inorganic hybridcomposite, produced by the addition of methacryloxypropyl trimethoxysilane (MAPTMS) tozirconium propoxide (ZPO, 70% in propanol). 2- (dimethylamino)ethyl methacrylate(DMAEMA) was added to provide the metal-binding moieties. MAPTMS and DMAEMA were used as the organic bis(diethylamino)benzophenone (BIS) was used as a photoinitiator.

Horizon 2020: FET Open – Novel ideas for radically new
technologies, Grant Agreement: 862016 technologies, Grant Agreement: 862016

BioCombs4Nantibers

A.-C. Joel, M. Meyer, J. Heitz, A. Heiss, D. Park, H. Adamova, W. Baumgartner, "Biomimetic Combs as Antiadhesive Tools to Manipulate Nanofibers". ACS Appl. Nano Mater. 3 (2020), 3395–3401, https://doi.org/10.1021/acsanm.0c0 0130 (Open Access, CC-BY-NC-ND)

3D laser lithography system Nanoscribe

- 780 nm, 80 MHz, 120mW
- Zeiss inverted microscope
-
-
- Microscope Camera: 1.4 Mega Pixels
- Microscope Objectives: 100x oil, 100xDiLL, 63x, 20x.

Performances

- •2D lateral resolution: 250 nm
- •2D lateral feature size: 90 nm
- •3D lateral feature size: 150 nm
- •Repeatability (coarse stage) < 1.5 um
- •IP-L 780
- •IP-DIP

https://cetal.inflpr.ro/newsite/nanoscribe

Main steps in the design of mushroom-like nanostructured pillars, showing the trajectory of the laser focused beam through unpolymerized material. Voxel size accounted: a) solid base support; b) mushroom's leg; c) mushroom Main steps in the design of mushroom-like nanostructured pillars, showing the trajectory of the laser focused beam through unpolymerized material. Voxel size accounted: a) solid base support; b) mushroom's leg; c) mushroom

Optimization of the hierarchic structures

O<mark>pti</mark>mization of the hierarchic structures
Scope: establish a tradeoff between structures' design, writing parameters and
post-processing procedures (developing time, type and combinations of
developers) that would get us **Optimization of the hierarchic structures**
 Scope: establish a tradeoff between structures' design, writing parameters and

post-processing procedures (developing time, type and combinations of

developers) that would g **Optimization of the hierarchic structures**
 Scope: establish a tradeoff between structures' design, writing parameters and

post-processing procedures (developing time, type and combinations of

developers) that would g **Optimization of the hierarchic structures**
 Scope: establish a tradeoff between structures' design, writing parameters and

post-processing procedures (developing time, type and combinations of

developers) that would g **Optimization of the hierarchic structures**
 Scoper establish a tradeoff between structures' design, writing parameters and
post-processing procedures (developing time, type and combinations of
pervelopers) that would ge **Optimization of the hierarchic structures**
 Scope: establish a tradeoff between structures' design, writing parameters and
post-processing procedures (developing time, type and combinations of
developers) that would get **Optimization of the hierarchic structures**
 Scope: establish a tradeoff between structures' design, writing par

post-processing procedures (developing time, type and com

developers) that would get us closer to the sco **Optimization of the hierarchic structures**
 Sceper establish a tradeoff between structures' design, writing para

post-processing procedures (developing time, type and comb

developers) that would get us closer to the s **Optimization of the hierarchic structures**
 Scope: establish a tradeoff-between-structures' design, writing parapost-processing procedures (developing time, type and comt

developers) that would get us closer to the sco **Scope:** establish a tradeoff between structures' design, writin post-processing procedures (developing time, type and developers) that would get us closer to the scope of Biot fabrication of periodic nanostructures on geo

Scope: establish a tradeoff between structures' despost-processing procedures (developing time, the developers) that would get us closer to the scopfabrication of periodic nanostructures on geometry as the calamistrum of r ers **nanostructured** mushroom-like **we have spotting** a magnetic must be to spotting a magnetic must be the spotting of having a deviation in periodicity and heigh
Laser Direct Writing via Two
Photons Polymerization (LDW via
TPP) of IP-Dip photoresist for the
fabrication of hierarchic structures
in the shape of mushrooms
Trushrooms' "hats"

Scanning electron micrographs of nanostructured and microstructured mushroom-like pillars fabricated by LDW via TPP. Left Scanning electron micrographs of
nanostructured and micro-
structured mushroom-like pillars
fabricated by LDW via TPP. Left
side - Optimization of laser
writing parameters for micro
(upper panel) and nanostructured
(lower writing parameters for micro (upper panel) and nanostructured (lower panel) mushroom-like pillars (MMP and NMP respectively) (a,d) laser speed 140 µm/s, laser power 13.8 mW; (b,e) laser speed 120 µm/s, laser power 12.5 mW; (c,f) laser speed 100 µm/s, laser power 12.5 mW.. (g-l) MMP and NMP areas fabricated using laser speed 100 µm/s and laser power 13.8 mW: $(g-i)$ MMP $(i-l)$ NMP; (g,i) close, top views of mushrooms' "hats"; h,k) close, tilted view of single MMP and NMP respectively; i,l) large, top views of MMP and MNP areas.

Optimization of the laser power

NFLPR

 Periodicity 280 nm for NMPs structures fabricated with 13.25 mW laser power and scan speed of 100 μ m/s (*green oval*)

Voxels from the outer edge of the indentation indicate an aspect ratio close to 1:1 height-width
Voxels closer to the center maintain the general 2:1 height-width aspect
ratio
This suggests that the voxel is stretched at Voxels from the outer edge of the indentation indiclose to 1:1 height-width
Voxels closer to the center maintain the general 2:1
ratio
This suggests that the voxel is stretched at the
indentation is formed

ratio

INITIAL TESTS USING LOW CELL DENSITY 50000cells/sample

NMP structures

cell attachment reduced by 55% as compared to flat surfaces

cells with round shape and no phyllopodia=low adhesion

MMP structures:

cell attachment reduced by 21% as compared to flat

surfaces

Day 5

 \mathbb{Z}

MMP

NMP

preserved the native shape spindle-like with phyllopodia

 \rightarrow NMP structures are more effective in impeding the cellular Microstructured mushroom-like pillars (NMP)
Nanostructured mushroom-like pillad bug Chment

Brief recall on 3D structuers to be teste in vitro

fabrication of periodic nanostructures with same size and geometry as the calamistrum of cribellate spiders, having a deviation in periodicity and height

In vitro tests on optimized structures

High Cellular Density. Int J Molec Sci 2022, 23 (6), 3247 Https://doi.org/10.3390/ijms23063247

Conclusions

- **LDW** by TPP is a promising rapid prototyping fabrication method based on two-photon polymerization with ultrashort laser pulses
- **The technique allows the fabrication of custom 3D** architectures, with a spatial resolution down to 100 nm, by direct laser 'recording' of the desired structure into the volume of a photopolymer.

Conclusions

- LIFT
- \blacksquare 2PP
- **MAPLE**
- assisted or/ $+$ other techniques, appropriate for (soft) material processing

Acknowledgments ^o NATO SfP 982671 Project

-
- o e-LIFT Project FP 7 Project
- o PNCDI II National Projects
- Acknowledgments

 NATO SfP 982671 Project

 e-LIFT Project FP 7 Project

 PNCDI II National Projects

 Horizon 2020: FET Open Novel ideas for radically new

technologies, Grant Agreement: 862016 technologies, Grant Agreement: 862016

A. Palla-Papavlu, I.A. Paun, G. Dinescu, S. Brajnicov, B. Calin , M. Filipescu, A. Moldovan, C. Mustaciosu¹, E. Vasile², M. Dinescu National Institute for Laser, Plasma and Radiation Physics, Magurele, Romania 1. National Institute for Physics and Nuclear Engineering, Magurele, Romania 2. Polytechnical University Bucharest

JFLPI

Maria Dinescu

National Institute for Lasers, Plasma, and Radiation Physics http://ppam.inflpr.ro